
Forging Reliable Edge Services: Harnessing

Deep Learning Models for Fault Tolerance

Giuliano Casale
g.casale@imperial.ac.uk

Quality of Service Research Lab

Department of Computing - Imperial College London

IEEE ISSRE 2023, Florence

Acknowledgements: Shreshth Tuli, Nicholas J. Jennings, Alim Ul Gias, Lucy Cherkasova

mailto:g.casale@imperial.ac.uk

Emerging edge applications:

• Autonomous driving

• AR/VR, edge gaming

• Smart cities, ports, farming, …

• Industrial IoT

Strict QoS/QoE requirements:

• Ultra-low latency

• High availability

• Zero perceived downtime

• Reliability often quoted as

a pressing challenge!

G. Casale – Slide 2

The rise of Edge computing

• Millions of tiny and embedded devices

• Rapid growth in edge AI hardware

– Edge accelerators (VPUs, TPUs)

– Efficiency: when normalized for power

and cost, comparable to server GPUs

– On-device learning can benefit edge

QoS management

• It's an exciting time to investigate
what AI can do for edge reliability!

IoT and Edge Devices

G. Casale – Slide 3

Ref: Liang, Shenoy, Irwin, AI on the Edge: Characterizing AI-based IoT Applications Using Specialized Edge Architectures, IISWC, 2020.

Basic Concepts

• Many architectures and platforms

– Fog, MEC, "path computing",

cloudlets, private vs public edge, ...

• Common challenges and themes:

– Processing data closer to

where it is generated

– Latency vs. resource constraints

– Need for a high degree of

automation

G. Casale – Slide 4

Edge Reliability: Why this is not a solved problem?

• The edge is a dynamic and failure-rich environment

G. Casale – Slide 5

Vibration shocks, Humidity, ...

Timing failures, Bugs,

 Low battery, OOM errors, ...

Tasks

Offloading

Cloud

Migration

...

Device

Heterogeneity
...

Intermittent connectivity

Data
IoT

Device
Gateway

Levels of FT intelligence

Taxonomy of Fault Tolerance (FT) Techniques

G. Casale – Slide 6

Proactive

• Preemptive migration

• Self-healing

• Rejuvenation

• ...

Reactive

• Checkpoint restart

• Replication

• Resubmission

• ...

Fault-

detection

Monitoring
Local

analysis
Global

analysis
Pattern

Learning

Edge-layer Deep NNs?

Ref: Engelmann et al., Proactive Fault Tolerance Using Preemptive Migration, PDP 2009.

Offline history DB

Embedding data in latent space

• A low-dimensional smooth

representation

• Many good properties:

– Abstract representations

– No feature engineering

– Expose natural clusters

– Represent time series context

– Compress high-dimensional data

– ...

• Often resource hungry

– e.g., Transformers: O(n2)

complexity w.r.t. the input length

G. Casale – Slide 7

Input
Output

Talk Outline

1. How are Deep models being used for edge reliability?

 Methods from the literature for fault detection, diagnosis and prediction

G. Casale – Slide 8

2. How can Deep models handle edge-layer spatio-temporal correlations?

 Results on preemptive task migration

3. Resource constraints: how can we reduce memory footprint?

 Results on FT in edge federations

Fault Detection, Diagnosis and Prediction

G. Casale – Slide 9

FT workflows

• Often an integrated workflow of methods,

rules, and heuristics

– Unsupervised clustering

– Time series forecasting

– Bayesian networks

– Ensemble learning

• Recovery is often optimization-based

– Mathematical programming

– Stochastic models

– Metaheuristics

G. Casale – Slide 10

Ref: Adeni et al., Proactive Self-Healing Approaches in Mobile Edge Computing: A Systematic Literature Review, 2023.

Prediction

Diagnosis

Recovery

Detection

• On-device learning (rPI 3)

– Predict timing failures,

OOM errors, congestion

– LSTM/GRU based

• About 100MB memory

– Knowledge distillation

– Quantization

– Pruning

• ~4-10ms for inference

• Lower RMSE than classic ML methods

– e.g., SVMs, Boosting

On-Device Deep Models for Failure Prediction

G. Casale – Slide 11

Ref: Violos et al., Hypertuning GRU Neural Networks for Edge Resource Usage Prediction, 2021.

• Edge-layer tracing picking up

– E.g, Azure IoT Edge, OpenTelemetry Collector, …

• Tail-based sampling can reduce footprint

– Only sample traces that are 'interesting’

• Embedding methods:

– Word2vec, graph embedding, DBN, …

• Sample using ML classifier or online clustering

– High accuracy (often >0.90 F1 score)

Integrating Deep Models with Tracing

G. Casale – Slide 12

Ref: Gias et al.; SampleHST: Efficient On-the-Fly Selection of Distributed Traces. NOMS 2023.

Integrating Deep Models in Fault Diagnosis

• ML fault classifiers affected by class imbalance problem

– Overfitting, bias and loss of information issues with random sampling

– Generative Adversarial Networks (GANs) increasingly adopted as a solution

• GANs for data augmentation

– Independent GANs for minority

and majority class

– Often boosts F1 (+5%-50%)

– Discriminator may also

replace the ML classifier

• GAN compression for edge deployment

G. Casale – Slide 13

Ref: Zhang et al., PWG-IDS: An Intrusion Detection Model for Solving Class Imbalance in IIoT Networks Using Generative Adversarial Networks, arxiv:2110.03445.

Few-Shot Learning with Prototype Networks

• Supervised (or self-supervised) few shot classifier

• Compute prototype of each class in latent space

• : labelled examples for class k (few for each class)

• : learnable embedding function

• Loss function:

• Query point mapped to a class using distance d

G. Casale – Slide 14

Refs: Snell et al.; Prototypical Networks for Few-shot Learning; NIPS 2017.
Medina et al.; Self-supervised prototypical transfer learning for few-shot classification, AutoML 2020.

Prototype-based classification

Deeper Models: Fault Prototypes with DeepFT

• Class prototypes updated at runtime

• Embedding NN also a surrogate model of

edge layer spatio-temporal correlations

• Scheduler decision evolved online towards

the no-fault class (NAP)

G. Casale – Slide 15

Ref: Tuli et al.; DeepFT: Fault-Tolerant Edge Computing using a Self-Supervised Deep Surrogate Model; INFOCOM 2023.

Modeling Spatio-Temporal Correlations Across Edge Devices

G. Casale – Slide 16

Deep models of spatio-temporal correlations

 Example: pre-emptive task migration (or "bag of tasks" migration)

G. Casale – Slide 17

Crashed

Unresponsive

Time

t

t+1

t+2 ...
Crashed

Preemptive migration

New arrivals

 Coupling is difficult to characterize far from steady-state conditions!

• Many stochastic models for

FT and performability

– SPNs, CTMCs, QNs, ...

• Focus on "time" and "counts"

• Yet if data is abundant, NN often

more accurate in dynamic settings:

System modelling

G. Casale – Slide 18

Task consolidation on Linux host Comparison of QoS prediction errors (MAPE)

Modeling Correlations with GNNs

Graph attention networks (GATs):

• Node features are resource utilizations, periodically

acquired from edge devices.

• Output is a latent representation at each host

Latent space representations based on:

• Graph convolution

– message-passing to represent workload and

utilization cross-correlations.

• Graph attention

– assign different importance to each

edge neighbor’s contribution.

5 -1 0 1 Latent representation

Util.

Util.

Broker 1

Broker 2

Worker 1.n Worker 2.n

G. Casale – Slide 19

G. Casale – Slide 20

Feature
Window

Schedule
Fault class
encoding

Fault Prototype Encoder

A new component for runtime edge FT systems:

• Discriminator to identify fault class (DA)

• Also outputs a fault class encoding (EF)

• Host-level embeddings zeroed for non-faulty nodes

Ref: Tuli et al.; PreGAN: Preemptive Migration Prediction Network for Proactive Fault-Tolerant Edge Computing. INFOCOM 2022.

A Preemptive Migration Application: the PreGAN model

• Generator introduces a candidate pre-emptive migration Δ

– Conceptually similar to a conditional GAN

– GAN acts as a simulation surrogate

• Discriminator scores confidence on the proposed migration

G. Casale – Slide 21

Task mappings
to edge nodes

Feature
Time Window

New schedule
with migrations

Discriminator
confidence

PreGAN: Runtime Fine-Tuning

G. Casale – Slide 22

• GAN discriminator trained to discard new schedules with worse QoS

PreGAN: Results

G. Casale – Slide 23

• Testbed: 8x4GB + 8x8GB raspberry PIs 4

• DeFog IoT applications

• Baselines:

– CMODLB: K-Means clustering and Swarm Optim.

– PCFT: Particle Swarm Optimization

– ECLB: Bayesian Optimization and Neural Nets

– DFTM: Integer Linear Programming

– GOBI: Scheduling only (with a co-simulator)

Dealing with Memory Constraints

G. Casale – Slide 24

DL Model Compression

• GANs can easily saturate device memory

• Several compression techniques exist

– Pruning

– Knowledge Distillation

– Quantization

– Splitting

– Low-rank factorization

– Memory Compression

– Slimming

– ...

G. Casale – Slide 25

Refs: D. Tantawy et al.; A survey on GAN acceleration using memory compression techniques; JEAS, 2021.
J. Yu et al.; Slimmable neural networks; ICLE 2019.

Slimmable neural networks

Deep convolutional GAN

Generative Adversarial Network (GAN)

G. Casale – Slide 26

• Generator create fake samples from random noise

• Discriminator classifies inputs as real or fake

• Adversarial training in a zero-sum game

Multiple

local optima

Generative Optimization Network (GON)

+ No generator required

(Up to +250% higher

F1/GB than slimmable GANs)

- Longer training

times than GANs

 (+5% to +40%)

G. Casale – Slide 27

 Training (SGD+mini-batches):

Example: Reliability in Edge Federations

• Edge architectures:

– Local edge infrastructures (LEIs)

– Configurable broker-worker roles

– QoS vs. limited resources

• Federation can share resources

and rebalance task load across LEIs

• Problem: Broker resilience

– QoS/SLOs calls for fast

remediation to broker failures

– Method must be lightweight

G. Casale – Slide 28

G. Casale – Slide 29

CAROL: a GON-based FT Technique

1. Broker failure

detection

2. Recovery

Candidates

3. CAROL GON

forecasts QoS

within Tabu Search

4. Confidence

triggered fine-tuning

of CAROL GON

Iteration time: ~100ms

Node-shift time: ~2s

GON memory size: ~1 GB

A Surrogate Model based on GONs

Deep model captures "normal" relationship

between QoS, topology and task allocations.

• Input: metrics, schedule, candidate recovery

• Output:

– Confidence Score D(G, M, S): measure that the

input is from the real data distribution

G. Casale – Slide 30

Ref: Tuli et al.; CAROL: Confidence-Aware Resilience Model for Edge Federations. DSN 2022.

• We train this using the GON approach to generate

realistic performance measures

• Forecast topology performance using GON as surrogate

– Find expected performance metrics for given schedule S and

topology G

Using the GON

G. Casale – Slide 31

Results

CAROL gives >16.5% lower

energy consumption

CAROL gives >8% lower

response time
CAROL consumes only 40%

memory compared to StepGAN

G. Casale – Slide 32

Conclusion

G. Casale – Slide 33

Closing takeaways

• Many new challenges in edge computing stress existing FT techniques

• Resource constraints should not stop us from looking at edge-layer NNs

• Deep architectures can embed whole FT workflows

• Deep models offer new tools to represent correlations at the edge

• Generative, co-simulation and few learning help cope with data constraints

G. Casale – Slide 34

Some Directions for the Future

• Broader coverage of fault types is needed

• Concept drift / adaptive AI

• Software engineering methodologies

• Explainability of Deep Models

• What synthesis shall we reach with classic FT approaches and models?

G. Casale – Slide 35

	Default Section
	Slide 1
	Slide 2
	Slide 3: IoT and Edge Devices
	Slide 4: Basic Concepts
	Slide 5: Edge Reliability: Why this is not a solved problem?
	Slide 6: Taxonomy of Fault Tolerance (FT) Techniques
	Slide 7: Embedding data in latent space
	Slide 8: Talk Outline
	Slide 9: Fault Detection, Diagnosis and Prediction
	Slide 10: FT workflows
	Slide 11: On-Device Deep Models for Failure Prediction
	Slide 12: Integrating Deep Models with Tracing
	Slide 13: Integrating Deep Models in Fault Diagnosis
	Slide 14: Few-Shot Learning with Prototype Networks
	Slide 16: Deeper Models: Fault Prototypes with DeepFT
	Slide 17: Modeling Spatio-Temporal Correlations Across Edge Devices
	Slide 18: Deep models of spatio-temporal correlations
	Slide 19: System modelling
	Slide 21: Modeling Correlations with GNNs
	Slide 22: Fault Prototype Encoder
	Slide 24: A Preemptive Migration Application: the PreGAN model
	Slide 25: PreGAN: Runtime Fine-Tuning
	Slide 26: PreGAN: Results
	Slide 27: Dealing with Memory Constraints
	Slide 28: DL Model Compression
	Slide 29: Generative Adversarial Network (GAN)
	Slide 30: Generative Optimization Network (GON)
	Slide 31: Example: Reliability in Edge Federations
	Slide 32
	Slide 33: A Surrogate Model based on GONs
	Slide 34: Using the GON
	Slide 35: Results
	Slide 36: Conclusion
	Slide 37: Closing takeaways
	Slide 38: Some Directions for the Future

