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The rise of Edge computing

Emerging edge applications:
« Autonomous driving
 AR/VR, edge gaming
« Smart cities, ports, farming, ...

 Industrial loT o NETWORKWORLD
Industrial loT faces big challenges
1 I ° Ind jal loT ds ultra-high reliability, al - ilability, and Iy low |
Strict QoS/QoE requirements: industral oT necds ulraHigh rezbit, lvays on avaiabilty,and extremelyow tency

implement.

* Ultra-low latency

* High availability HELP NETSECURITY
Multi-cloud and edge deployments

* Zero percelved downtime threatened by security and

» Reliability often quoted as connectivity problems

a pressing challenge! The Growing Importance of Al and Automation in Building and

Maintaining 5G Networks OPP.TODAY
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loT and Edge Devices
« Millions of tiny and embedded devices

» Rapid growth in edge Al hardware
— Edge accelerators (VPUs, TPUs)

— Efficiency: when normalized for power
and cost, comparable to server GPUs

— On-device learning can benefit edge
QoS management

« It's an exciting time to investigate
what Al can do for edge reliability!

Ref. Liang, Shenoy, Irwin, Al on the Edge: Characterizing Al-based loT Applications Using Specialized Edge Architectures, ISWC, 2020.
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Cloud data
Basic Concepts center
* Many architectures and platforms et
— Fog, MEC, "path computing"”, P
cloudlets, private vs public edge, ... . 4

« Common challenges and themes:

— Processing data closer to Cloud L “‘l' |
where it is generated SR III TReR

— Latency vs. resource constraints >
. > S || ~4-8GB
— Need for a high degree of c 8 .
. = N Most of this talk
automation — =
< || ~1-2G8

Edge Layer

~100s MB
v
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Edge Reliability: Why this is not a solved problem?

« The edge is a dynamic and failure-rich environment

' Intermittent connectivit
Offloading Migration y
L
Tasks g i Q Q : “ i :'

B P =

Data /
loT (((;))) — “ Gateway

Device

\mmuiiiilli"iu %ﬁ
dSes fﬂ.

Device
Heterogeneity

Vibration shocks, Humidity, ...
Timing failures, Bugs,
Low battery, OOM errors, ...
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Taxonomy of Fault Tolerance (FT) Techniques

Reactive Proactive
*  Checkpoint restart *  Preemptive migration
« Replication « Self-healing
*  Resubmission * Rejuvenation

Offline history DB

Levels of FT intelligence Edge-layer Deep NNs?

hl/'or‘:itorg Fault- ::> Local :> Global ::> Pattern
detection analysis analysis Learning

Ref. Engelmann et al., Proactive Fault Tolerance Using Preemptive Migration, PDP 2009.
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Embedding datain latent space

A low-dimensional smooth

representation

Many good properties:

Abstract representations
No feature engineering
Expose natural clusters

Input

e

TN Latent space
g Representation

-,
-
-
-
-
-
-

G. Casale

Represent time series context

Compress high-dimensional data

Often resource hungry

e.g., Transformers: O(n?)
complexity w.rt. the input length

Encoder Bottleneck

Decoder

R Machine

learning
tasks

—Slide 7

Output
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Talk Outline

1. How are Deep models being used for edge reliability?
—> Methods from the literature for fault detection, diagnosis and prediction

2. How can Deep models handle edge-layer spatio-temporal correlations?
—> Results on preemptive task migration

3. Resource constraints: how can we reduce memory footprint?
—> Results on FT in edge federations



. G. Casale - Sli
Imperial College asale - Slide 9

London

Fault Detection, Diagnosis and Prediction
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’
FT workflows

Monitor
No .
Detection
Yes
< =
Rules ‘ o
pPolicies |——3| Prediction

Diagnosis

e Often an integrated workflow of methods
rules, and heuristics
— Unsupervised clustering
— Time series forecasting
— Bayesian networks
— Ensemble learning

Update

« Recovery is often optimization-based
— Mathematical programming
— Stochastic models
— Metaheuristics

Recovery

Recovery
achieved

Ref. Adeni et al., Proactive Self-Healing Approaches in Mobile Edge Computing: A Systematic Literature Review, 2023.
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On-Device Deep Models for Failure Prediction

* On-device learning (rPI 3)

— Predict timing failures,
OOM errors, congestion

— LSTM/GRU based

« About 100MB memory
— Knowledge distillation

X/
S
v

o

— Quantization Peodicio
— Pruning
Method RMSE
« ~4-10ms for inference ABES.GRU | 0.0641
GA-LSTM | 0.0674
Keras-Tuner 0.0785
« Lower RMSE than classic ML methods ame” | D981
Auto-sklearn | 0.1055

— e.g., SVMs, Boosting

Ref: Violos et al.,, Hypertuning GRU Neural Networks for Edge Resource Usage Prediction, 2021.
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Integrating Deep Models with Tracing

Unigue ID—{context}

- Edge-layer tracing picking up chpesoricn |
— E.g, Azure loT Edge, OpenTelemetry Collector, ... (mmf&m
B E
{context) \/ \jtﬂmexl)
« Tail-based sampling can reduce footprint c) (o

— Only sample traces that are 'interesting’

* Embedding methods:
— Word2vec, graph embedding, DBN, ...

« Sample using ML classifier or online clustering
— High accuracy (often >0.90 F1 score)

Ref: Gias et al.; SampleHST: Efficient On-the-Fly Selection of Distributed Traces. NOMS 2023.

[

Trace Feature 2 (0-1)
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Trace Feature 1 (0-1) 1
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Integrating Deep Models in Fault Diagnosis

« ML fault classifiers affected by class imbalance problem

— Overfitting, bias and loss of information issues with random sampling
— Generative Adversarial Networks (GANSs) increasingly adopted as a solution

Real Samples

*  GANs for data augmentation FL
— Independent GANs for minority 7
and majority class | D(aiz
— Often boosts F1 (+5%-50%) Noise Samples D(z")

— Discriminator may also I
G

replace the ML classifier
. enerated Samples
*  GAN compression for edge deployment ’

Ref. Zhang et al., PWG-IDS: An Intrusion Detection Model for Solving Class Imbalance in lloT Networks Using Generative Adversarial Networks, arxiv:2110.03445.
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Few-Shot Learning with Prototype Networks

Supervised (or self-supervised) few shot classifier
Compute prototype ¢, of each class in latent space
Sk : labelled examples for class k (few for each class)

= S folxi)

|Sﬁc|{ ey
f¢ :learnable embedding function
Loss function: J(@) = —logpe(y =
Query point mapped to a class using distance d

exp(—d(fg(x), ck))
2y exp(—d(fe(x), cx))

qu(fj =k|[x) =

Refs: Snell et al.; Prototypical Networks for Few-shot Learning; NIPS 2017.
Medina et al.; Self-supervised prototypical transfer learning for few-shot classification, AutoML 2020.
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® CPU

® RAM

® Network

Prototype-based classification
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Deeper Models: Fault Prototypes with DeepFT

SNAP @04 ®C2 3

« C(Class prototypes updated at runtime o | ]

4 ) i
S Scheduling Scheduling Decision System State - | i y
Decision Encoder Decoder
‘ |

Time Series Prototype Vector D |
1/ - tem t od — ’ )
" Window S e T Encoder

- 4
« Embedding NN also a surrogate model of e
edge layer spatio-temporal correlations
« Scheduler decision evolved online towards Ll 2 o
the no-fault class (NAP) S =,

Iteration

Ref: Tuli et al; DeepFT: Fault-Tolerant Edge Computing using a Self-Supervised Deep Surrogate Model; INFOCOM 2023.
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Modeling Spatio-Temporal Correlations Across Edge Devices
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Deep models of spatio-temporal correlations
Example: pre-emptive task migration (or "bag of tasks" migration)

Time _
t HER fﬂ@%ﬁtf' : W
Crashed Preemptive migration
] g BEEE S
Crashed New arrivals Unresponsive
t4+2 g miepy § | I
+ >

Coupling is difficultto characterize far from steady-state conditions!
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System modelling

« Many stochastic models for
FT and performability
— SPNs, CTMCs, QNis, ...
* Focus on "time" and "counts"

* Yet if data is abundant, NN often

more accurate in dynamic settings:

Task consolidation on Linux host

Linux CFS scheduler o
unning

— @ G e e 4@—} Completed

Preempt

Runqueue

Waiting — Ready

@000
®

Waiting queue

o

Block on 1/0
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. TargetRestart
TargetWait g

m=clear?

hqstFail __ hos{Repair rebootVM

HostDW VMWait

Comparison of QoS prediction errors (MAPE)

Raw sum of runqueues

/ Fundamental perf. laws (model-free)
100 * mean |1
X median
80t Queueing model
=== n MLE used for parameters
gt —+ /
A
40+t Fully connected network
- |
20} - R

No model OA QN NN
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Modeling Correlations with GNNs

Graph attention networks (GATs):

* Node features are resource utilizations, periodically
acquired from edge devices.

Util.

!

Broker2

« Output is a latent representation at each host

Latent space representations based on:
* Graph convolution

— message-passing to represent workload and
. . . Worker1.
utilization cross-correlations. oTeErE s Worker2.n

* Graph attention

— assign different importance to each 5]-1]0] 1| latentrepresentation
edge neighbor’s contribution.
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Fault Prototype Encoder

A new component for runtime edge FT systems: lodm S sven,
- Discriminator to identify fault class (D*) SRS N
« Also outputs a fault class encoding (E) Tt ' 4
« Host-level embeddings zeroed for non-faulty nodes
Schedule S Faultclass
encoding

' ™y ' %
Graph O Feed | Softmax Embedding
Attention [ Forward Generator
A L r
' ™y ' ™
IV Gated Multi-Head | @ [ Feed | _ Sigmoid P
' Recurrent Unit Attention Forward |
Y\ v LN r
Feature f¢ . RD — RJ’U
Window

Ref: Tuli et al,; PreGAN: Preemptive Migration Prediction Network for Proactive Fault-Tolerant Edge Computing. INFOCOM 2022.
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A Preemptive Migration Application: the PreGAN model

S

Task mappings
to edge nodes

W

Feature
Time Window

Scheduling
Decision

-

4

PreGAN
Premptive Migration &
Generator
-
A

Time Series
Window

Fault Protoype Encoder

~

s

o

-

Premptive Migration
Discriminator

~
},

-
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> )
Discriminator
confidence

N

New schedule
with migrations

* Generator introduces a candidate pre-emptive migration A

— Conceptually similar to a conditional GAN
— GAN acts as a simulation surrogate

* Discriminator scores confidence on the proposed migration
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PreGAN: Runtime Fine-Tuning

Enact

e Decision Model

(PreGAN) Decision

Sample

Decisions
Feedback

Simulator Loop

Simulate in virtual time
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!
>

-

— [\ ——»| Co-Simulator

(.

~

>y

-

S ——» Co-Simulator

L

N

— Q(N)

J

— Q(S5)

* GAN discriminator trained to discard new schedules with worse QoS

I log(D) + log(1 — D)
v log(1 — D) + log(D)

if Q(N) = Q(S5)

otherwise
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PreGAN: Results

» Testbed: 8x4GB + 8x8GB raspberry Pls 4
« DeFog loT applications
« Baselines:

010

LIRS

Fraction of total SLO Vi latiors

. . LLLEH 1
— CMODLB: K-Means clustering and Swarm Optim. ]
— PCFT: Particle Swarm Optimization 0.0 1
— ECLB: Bayesian Optimization and Neural Nets 0.02 ]
— DFTM: Integer Linear Programming 000 . .
. . . . ) i S R, -
— GOBI: Scheduling only (with a co-simulator) i S
Bflcmdel
Method Detection Diagnosis = 1 T 'mz:H_ I I B+
Accuracy Precision Recall F1 Score HR@100 NDCG@100 HE + HH ‘j i,__ Hatalet 111 [,l H—H 2
o u N a L
DFTM 0.8731 +0.0234 0.7713 +0.0823 0.8427 +0.0199 0.8054 +0.0872 0.5129 +0.0212 0.4673 +0.0019 E T “:H:':h:' &
ECLB 0.9413 +£0.0172 0.7812 £0.0711 0.8918 +0.0203 0.8329 £0.0901 0.4913 £0.0010 0.5239 £0.0024 :"J_‘ 'E. 1:- m E
PCFT 0.8913 +0.0108 0.8029 +0.0692  0.9018 +0.0165 0.8495 +0.0312 0.5982 +0.0094 0.5671 +0.0020 = g | | u
CMODLB 0.9128 +0.0112  0.8158 +0.0343  0.9013 £0.0091  0.8605 £0.0284  0.6309 +0.0025  0.5432 +0.0031 P :n B “g"
PreGAN 0.9635 £0.00921 0.8723 +0.0221 0.9018 +0.0121 0.8868 +£0.0629 0.6232 £0.0069 0.5898 1+0.0080 16 11 ]9- LITIT |2|8|-| 1 IH3;8 -z
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Dealing with Memory Constraints
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DL Model Compression

* GANSs can easily saturate device memory "
« Several compression techniques exist " | |
—  Pruning . T R

CONV 2

— Knowledge Distillation
— Quantization
— Splitting

Deep convolutional GAN

— Low-rank factorization

. o ololele

— Memory Compression X -y
o & &
Slimming X2 AN

Slimmable neural networks

Refs: D. Tantawy et al.; A survey on GAN acceleration using memory compression techniques; JEAS, 2021.
J. Yu et al, Slimmable neural networks; ICLE 2019.
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Generative Adversarial Network (GAN)

» Generator create fake samples from random noise
« Discriminator classifies inputs as real or fake
* Adversarial training in a zero-sum game

Real Samples

=

Noise Samples

Generated Samples
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Generative Optimization Network (GON)

Multiple o
+ No generator required ,localoptima - Longer training

(Up to +250% higher times than GANs
F1/GB than slimmable GANs) (+5% to +40%)

Real Samples If‘_‘ Noise Samples
T <

D(z) D(z) D(z%)

Generated Samples

z 4 z+~V, log (D(z)) Training (SGD+mini-batches):
log(D(G, M, S)) +log(1 - D(G, 2%, 5))
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Example: Reliability in Edge Federations

« Edge architectures:
— Local edge infrastructures (LEIs)
— Configurable broker-worker roles
— QoS vs. limited resources

 Federation can share resources
and rebalance task load across LEls

e  Problem: Broker resilience

— QoS/SLOs calls for fast
remediation to broker failures

— Method must be lightweight
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CAROL: a GON-based FT Technique

Original topology

Higher broker count

Brokers

Workers

S @

DI SD
DI

DS B

P D
I D
S S

X &

1. Broker failure
detection

2. Recovery
Candidates

—— Confidence Score === Peak Over Threshold
T T T

1 A _-l--‘ L —e==tT 1 L " L 1 L "
0 200 400 600
Scheduling Interval

| Y " " 1
800 1000

© concstenste D(G, M, S)

3. CAROL GON 4. Confidence

forecasts QoS triggered fine-tuning
within Tabu Search of CAROL GON

lteration time; ~100ms
Node-shift time: ~2s
GON memory size: ~1 GB
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A Surrogate Modelbased on GONs
. . : : M S G
Deep model captures "normal” relationship | | l
between QoS, topology and task allocations. [Per&"ei???s”ce] [Séli?s“iliﬂg] [ Topolgy ]

* Input: metrics, schedule, candidate recovery

Lower broker count Higher broker count

&S NN

DAV R D
DI RS
S S S

*  Output:
Legend:

— Confidence Score D(G, M, S): measure that the (©) Concatenate D(G, M, S)
input is from the real data distribution

Graph
Attention
»(C
Feed
Forward

Sigmoid

Ref: Tuli et al: CAROL: Confidence-Aware Resilience Model for Edge Federations. DSN 2022.
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Using the GON

* We train this using the GON approach to generate
realistic performance measures -

L =log (D(M,S,G:0)) +log (1 - D(Z*,5,QG))

« Forecast topology performance using GON as surrogate

— Find expected performance metrics for given schedule S and
topology G

M + M +~Valog (D(M, S, G))



G. Casale — Slide 32

Imperial College

London

Results

B ECLB

DYVERSE

—1

[ ELBS

=7 With Traditional Surrogate Model

= LBOS

El StepGAN Il TopoMAD 1 FRAS

I CAROL

X With GAN

[ Never Fine-Tune

[Z A4 Always Fine-Tune

QOUBUILIOJIO OAIYR[OY

<t 92 N —
— v

©FELLLL

(%) uworpdwinsuo)) A1o0WLN

90URULIOJIOJ SAIYR[OY

(spuooaes) owry, asuodsay

9OURUIIONIDJ SATYR[IY
2 = N <
-

(19- M 31) uorpdwinsuoy) A819uyy

CAROL consumes only 40%
memory compared to StepGAN

CAROL gives >8% lower

CAROL gives >16.5% lower

response time

energy consumption
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Conclusion
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Closing takeaways

*  Many new challenges in edge computing stress existing FT techniques

*  Resource constraints should not stop us from looking at edge-layer NNs
«  Deep architectures can embed whole FT workflows

«  Deep models offer new tools to represent correlations at the edge

*  Generative, co-simulation and few learning help cope with data constraints
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Some Directions for the Future

Broader coverage of fault types is needed
«  Concept drift / adaptive Al

- Software engineering methodologies

»  Explainability of Deep Models

*  What synthesis shall we reach with classic FT approaches and models?



	Default Section
	Slide 1
	Slide 2
	Slide 3:  IoT and Edge Devices
	Slide 4: Basic Concepts
	Slide 5: Edge Reliability: Why this is not a solved problem? 
	Slide 6: Taxonomy of Fault Tolerance (FT) Techniques
	Slide 7: Embedding data in latent space
	Slide 8:  Talk Outline
	Slide 9:  Fault Detection, Diagnosis and Prediction
	Slide 10: FT workflows
	Slide 11: On-Device Deep Models for Failure Prediction
	Slide 12: Integrating Deep Models with Tracing
	Slide 13: Integrating Deep Models in Fault Diagnosis
	Slide 14: Few-Shot Learning with Prototype Networks
	Slide 16: Deeper Models: Fault Prototypes with DeepFT
	Slide 17: Modeling Spatio-Temporal Correlations Across Edge Devices
	Slide 18: Deep models of spatio-temporal correlations
	Slide 19: System modelling
	Slide 21: Modeling Correlations with GNNs
	Slide 22: Fault Prototype Encoder
	Slide 24: A Preemptive Migration Application: the PreGAN model
	Slide 25: PreGAN: Runtime Fine-Tuning
	Slide 26: PreGAN: Results
	Slide 27: Dealing with Memory Constraints
	Slide 28: DL Model Compression
	Slide 29: Generative Adversarial Network (GAN)
	Slide 30: Generative Optimization Network (GON)
	Slide 31: Example: Reliability in Edge Federations
	Slide 32
	Slide 33: A Surrogate Model based on GONs
	Slide 34: Using the GON
	Slide 35: Results
	Slide 36: Conclusion
	Slide 37: Closing takeaways
	Slide 38: Some Directions for the Future


