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Emerging edge applications:

• Autonomous driving

• AR/VR, edge gaming

• Smart cities, ports, farming, …

• Industrial IoT
 

Strict QoS/QoE requirements:

• Ultra-low latency

• High availability

• Zero perceived downtime

• Reliability often quoted as 

a pressing challenge!
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The rise of Edge computing



• Millions of tiny and embedded devices

• Rapid growth in edge AI hardware

– Edge accelerators (VPUs, TPUs)

– Efficiency: when normalized for power 

and cost, comparable to server GPUs

– On-device learning can benefit edge 

QoS management

• It's an exciting time to investigate
what AI can do for edge reliability!

IoT and Edge Devices
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Ref: Liang, Shenoy, Irwin, AI on the Edge: Characterizing AI-based IoT Applications Using Specialized Edge Architectures, IISWC, 2020.



Basic Concepts

• Many architectures and platforms

– Fog, MEC, "path computing",

cloudlets, private vs public edge, ...

• Common challenges and themes:

– Processing data closer to 

where it is generated

– Latency vs. resource constraints

– Need for a high degree of 

automation
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Edge Reliability: Why this is not a solved problem?

• The edge is a dynamic and failure-rich environment
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Vibration shocks, Humidity, ...

Timing failures, Bugs,

 Low battery, OOM errors, ...

Tasks

Offloading

Cloud

Migration

...

Device

Heterogeneity
...

Intermittent connectivity  

Data
IoT

Device
Gateway



Levels of FT intelligence

Taxonomy of Fault Tolerance (FT) Techniques
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Proactive

• Preemptive migration

• Self-healing

• Rejuvenation

• ...

Reactive

• Checkpoint restart

• Replication

• Resubmission

• ...

Fault-

detection

Monitoring
Local

analysis
Global

analysis
Pattern

Learning

Edge-layer Deep NNs?

Ref: Engelmann et al., Proactive Fault Tolerance Using Preemptive Migration, PDP 2009.

Offline history DB



Embedding data in latent space

• A low-dimensional smooth 

representation

• Many good properties:

– Abstract representations

– No feature engineering

– Expose natural clusters

– Represent time series context

– Compress high-dimensional data

– ...

• Often resource hungry

– e.g., Transformers: O(n2) 

complexity w.r.t. the input length
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Input 
Output



Talk Outline

1. How are Deep models being used for edge reliability?

     Methods from the literature for fault detection, diagnosis and prediction
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2. How can Deep models handle edge-layer spatio-temporal correlations?

     Results on preemptive task migration

3. Resource constraints: how can we reduce memory footprint?

     Results on FT in edge federations



Fault Detection, Diagnosis and Prediction
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FT workflows

• Often an integrated workflow of methods,

rules, and heuristics

– Unsupervised clustering

– Time series forecasting

– Bayesian networks

– Ensemble learning

• Recovery is often optimization-based

– Mathematical programming

– Stochastic models

– Metaheuristics
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Ref: Adeni et al., Proactive Self-Healing Approaches in Mobile Edge Computing: A Systematic Literature Review, 2023.

Prediction

Diagnosis

Recovery

Detection



• On-device learning (rPI 3)

– Predict timing failures, 

OOM errors, congestion

– LSTM/GRU based

• About 100MB memory

– Knowledge distillation

– Quantization

– Pruning

• ~4-10ms for inference

• Lower RMSE than classic ML methods

– e.g., SVMs, Boosting

On-Device Deep Models for Failure Prediction
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Ref: Violos et al., Hypertuning GRU Neural Networks for Edge Resource Usage Prediction, 2021.



• Edge-layer tracing picking up

– E.g, Azure IoT Edge, OpenTelemetry Collector, …

• Tail-based sampling can reduce footprint

– Only sample traces that are 'interesting’

• Embedding methods:

– Word2vec, graph embedding, DBN, …

• Sample using ML classifier or online clustering

– High accuracy (often >0.90 F1 score)

Integrating Deep Models with Tracing
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Ref: Gias et al.; SampleHST: Efficient On-the-Fly Selection of Distributed Traces. NOMS 2023.



Integrating Deep Models in Fault Diagnosis

• ML fault classifiers affected by class imbalance problem

– Overfitting, bias and loss of information issues with random sampling

– Generative Adversarial Networks (GANs) increasingly adopted as a solution

• GANs for data augmentation

– Independent GANs for minority 

and majority class

– Often boosts F1 (+5%-50%)

– Discriminator may also 

replace the ML classifier

• GAN compression for edge deployment
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Ref: Zhang et al., PWG-IDS: An Intrusion Detection Model for Solving Class Imbalance in IIoT Networks Using Generative Adversarial Networks, arxiv:2110.03445.



Few-Shot Learning with Prototype Networks

• Supervised (or self-supervised) few shot classifier

• Compute prototype    of each class in latent space

•   : labelled examples for class k (few for each class)

•   : learnable embedding function

• Loss function:

• Query point mapped to a class using distance d
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Refs: Snell et al.; Prototypical Networks for Few-shot Learning;  NIPS 2017.
Medina et al.; Self-supervised prototypical transfer learning for few-shot classification, AutoML 2020.

Prototype-based classification



Deeper Models: Fault Prototypes with DeepFT

• Class prototypes updated at runtime

• Embedding NN also a surrogate model of 

edge layer spatio-temporal correlations

• Scheduler decision evolved online towards 

the no-fault class (NAP)
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Ref: Tuli et al.; DeepFT: Fault-Tolerant Edge Computing using a Self-Supervised Deep Surrogate Model; INFOCOM 2023.



Modeling Spatio-Temporal Correlations Across Edge Devices
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Deep models of spatio-temporal correlations

 Example: pre-emptive task migration (or "bag of tasks" migration)
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Crashed

Unresponsive

Time

t

t+1

t+2 ...
Crashed

Preemptive migration

New arrivals

  Coupling is difficult to characterize far from steady-state conditions!



• Many stochastic models for 

FT and performability

– SPNs, CTMCs, QNs, ...

• Focus on "time" and "counts"

• Yet if data is abundant, NN often

more accurate in dynamic settings:

System modelling
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Task consolidation on Linux host Comparison of QoS prediction errors (MAPE)



Modeling Correlations with GNNs

Graph attention networks (GATs):

• Node features are resource utilizations, periodically 

acquired from edge devices.

• Output is a latent representation at each host

Latent space representations based on:

• Graph convolution

– message-passing to represent workload and 

utilization cross-correlations.

• Graph attention

– assign different importance to each 

edge neighbor’s contribution.

5 -1 0 1 Latent representation

Util.

Util.

Broker 1

Broker 2

Worker 1.n Worker 2.n
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Feature
Window

Schedule
Fault class 
encoding

Fault Prototype Encoder

A new component for runtime edge FT systems:

• Discriminator to identify fault class (DA)

• Also outputs a fault class encoding (EF)

• Host-level embeddings zeroed for non-faulty nodes

Ref: Tuli et al.; PreGAN: Preemptive Migration Prediction Network for Proactive Fault-Tolerant Edge Computing. INFOCOM 2022.



A Preemptive Migration Application: the PreGAN model

• Generator introduces a candidate pre-emptive migration Δ

– Conceptually similar to a conditional GAN

– GAN acts as a simulation surrogate

• Discriminator scores confidence on the proposed migration
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Task mappings
to edge nodes

Feature
Time Window

New schedule
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PreGAN: Runtime Fine-Tuning
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• GAN discriminator trained to discard new schedules with worse QoS



PreGAN: Results
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• Testbed: 8x4GB + 8x8GB raspberry PIs 4

• DeFog IoT applications

• Baselines:

– CMODLB: K-Means clustering and Swarm Optim.

– PCFT: Particle Swarm Optimization

– ECLB: Bayesian Optimization and Neural Nets

– DFTM: Integer Linear Programming

– GOBI: Scheduling only (with a co-simulator)



Dealing with Memory Constraints
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DL Model Compression

• GANs can easily saturate device memory

• Several compression techniques exist

– Pruning

– Knowledge Distillation

– Quantization

– Splitting

– Low-rank factorization

– Memory Compression

– Slimming

– ...
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Refs: D. Tantawy et al.; A survey on GAN acceleration using memory compression techniques; JEAS, 2021.
J. Yu et al.; Slimmable neural networks; ICLE 2019.

Slimmable neural networks

Deep convolutional GAN



Generative Adversarial Network (GAN)
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• Generator create fake samples from random noise

• Discriminator classifies inputs as real or fake

• Adversarial training in a zero-sum game



Multiple 

local optima

Generative Optimization Network (GON)

+ No generator required

(Up to +250% higher 

F1/GB than slimmable GANs)

- Longer training

times than GANs

 (+5% to +40%)
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      Training (SGD+mini-batches):



Example: Reliability in Edge Federations

• Edge architectures:

– Local edge infrastructures (LEIs)

– Configurable broker-worker roles

– QoS vs. limited resources

• Federation can share resources 

and rebalance task load across LEIs

• Problem: Broker resilience

– QoS/SLOs calls for fast 

remediation to broker failures

– Method must be lightweight
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CAROL: a GON-based FT Technique

1. Broker failure 

detection

2. Recovery

Candidates

3. CAROL GON 

forecasts QoS 

within Tabu Search

4. Confidence

triggered fine-tuning

of CAROL GON

Iteration time: ~100ms

Node-shift time: ~2s

GON memory size: ~1 GB



A Surrogate Model based on GONs

Deep model captures "normal" relationship 

between QoS, topology and task allocations.

• Input: metrics, schedule, candidate recovery

• Output:

– Confidence Score D(G, M, S): measure that the 

input is from the real data distribution
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Ref: Tuli et al.; CAROL: Confidence-Aware Resilience Model for Edge Federations. DSN 2022.



• We train this using the GON approach to generate 

realistic performance measures

• Forecast topology performance using GON as surrogate

– Find expected performance metrics for given schedule S and 

topology G

Using the GON
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Results

CAROL gives >16.5% lower 

energy consumption

CAROL gives >8% lower 

response time 
CAROL consumes only 40% 

memory compared to StepGAN
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Conclusion

G. Casale – Slide 33



Closing takeaways

• Many new challenges in edge computing stress existing FT techniques

• Resource constraints should not stop us from looking at edge-layer NNs

• Deep architectures can embed whole FT workflows

• Deep models offer new tools to represent correlations at the edge

• Generative, co-simulation and few learning help cope with data constraints
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Some Directions for the Future

• Broader coverage of fault types is needed

• Concept drift / adaptive AI

• Software engineering methodologies

• Explainability of Deep Models

• What synthesis shall we reach with classic FT approaches and models?
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